Pathogenesis of Pulmonary Disease In Ebola Virus-Infected Pigs

Charles Nfon¹, Anders Leung², Greg Smith¹, Carissa Embury-Hyatt¹, Gary Kobinger²,³,⁴ and Hana Weingart¹,³

¹National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
²Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
³Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
⁴Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
Introduction

Family Filoviridae

Species: Ebola virus (EBOV) & Marburg virus

Enveloped, negative-strand RNA viruses

Pleomorphic, filamentous, 80nm diameter, varying lengths up to 14,000 nm

EBOV causes ebolavirus hemorrhagic fever (EHF)

EHF probably the most severe of viral hemorrhagic fevers
History And Distribution Of Reported EBOV Outbreaks

ZEBOV = Zaire ebola virus (1976)
SEBOV = Sudan ebola virus (1976)
REBOV = Reston ebola virus (1989)
CIEBOV = Cote d’Ivoire ebola virus (1994)
BEBOV = Bundibugyo ebola virus (2007)

> What possessed them to perform this seemingly *odd experiment*? *Bausch D.* *The Journal of Infectious Diseases* (2011)
Ebola In Pigs: Reston Ebola Virus

- Multiple outbreaks of respiratory and abortion syndrome in pigs in 2008
- Detection of porcine reproductive & respiratory syndrome virus (PRRSV)
- CPE in Vero cells suggested presence of another virus other than PRRSV
- The unknown virus identified as REBOV by EM & molecular biology techniques
- REBOV only detected in pigs co-infected with PRRSV

Reston Ebola Virus (REBOV) In Pigs In The Absence Of Co-infection

- Virus isolated from lungs, lymph nodes, nasal turbinates and muscle

- Gross & histopathology in the respiratory system and lymphoid tissues

- No clinical signs of disease

Experimental Zaire Ebola Virus (ZEBOV) Infection In Pigs

- Pigs infected with 10^6 PFUs ZEBOV by oro-nasal routes
- Fever starting at dpi 4
- ZEBOV replicated mainly in the lungs
- Oral and nasal shedding of virus
- Severe pathology in the lungs
- Symptoms mainly respiratory
- Infected pigs transmit ZEBOV to naïve pigs

Objective

Main clinical sign in ZEBOV infected pigs: respiratory distress (due to pathology in the lungs)

Identify the mechanisms involved the development of pulmonary disease in ZEBOV-infected pigs
Pulmonary Innate Immune Responses In ZEBOV-infected Pigs

(Kobinger et al, 2011)
Pulmonary Cytokine Response In ZEBOV Infected Pigs

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Fold change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DPI3</td>
<td>DPI5</td>
</tr>
<tr>
<td>IL-6</td>
<td>Interleukin-6</td>
<td>2</td>
</tr>
<tr>
<td>IL-8</td>
<td>Interleukin-8</td>
<td>8</td>
</tr>
<tr>
<td>IL-10</td>
<td>Interleukin-10</td>
<td>2</td>
</tr>
<tr>
<td>IL-22</td>
<td>Interleukin-22</td>
<td>1</td>
</tr>
<tr>
<td>IL-26</td>
<td>Interleukin-26</td>
<td>1</td>
</tr>
<tr>
<td>IL-27</td>
<td>Interleukin-27</td>
<td>2</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Granulocyte monocyte colony stimulating factor</td>
<td>2</td>
</tr>
<tr>
<td>SPP1</td>
<td>Secreted phosphoprotein 1</td>
<td>3</td>
</tr>
<tr>
<td>SELL</td>
<td>Selectin</td>
<td>4</td>
</tr>
<tr>
<td>RETN</td>
<td>Resistin</td>
<td>1</td>
</tr>
<tr>
<td>PLUNC</td>
<td>palate, lung and nasal epithelium associated</td>
<td>66</td>
</tr>
</tbody>
</table>

Attract monocytes, neutrophils & lymphocytes to sites of infection

Induce the secretion of chemokines & acute phase proteins

Drive differentiation and proliferation of immune cells

Cell adhesion & trafficking

Antinflammatory (IL-10)
Pulmonary Chemokine Response In ZEBOV-infected Pigs

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Fold change</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DPI3</td>
<td>DPI5</td>
<td>DPI7</td>
</tr>
<tr>
<td>CCL2</td>
<td>Chemokine (C-C motif) ligand 2</td>
<td>1</td>
<td>29</td>
<td>32</td>
</tr>
<tr>
<td>CCL3L1</td>
<td>Chemokine (C-C motif) ligand 3-like 1</td>
<td>2</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>CCL4</td>
<td>Chemokine (C-C motif) ligand 4</td>
<td>2</td>
<td>33</td>
<td>28</td>
</tr>
<tr>
<td>CCL10</td>
<td>Chemokine (C-C motif) ligand 10</td>
<td>10</td>
<td>109</td>
<td>211</td>
</tr>
<tr>
<td>CCL19</td>
<td>Chemokine (C-C motif) ligand 19</td>
<td>2</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>CCL20</td>
<td>Chemokine (C-C motif) ligand 20</td>
<td>7</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>AMCF-II</td>
<td>Alveolar macrophage-derived chemotactic factor</td>
<td>2</td>
<td>478</td>
<td>258</td>
</tr>
<tr>
<td>SAA</td>
<td>Serum amyloid A2</td>
<td>4</td>
<td>907</td>
<td>836</td>
</tr>
<tr>
<td>C9</td>
<td>Complement component 9</td>
<td>4</td>
<td>48</td>
<td>72</td>
</tr>
</tbody>
</table>

Attract monocytes, neutrophils & lymphocytes to sites of infection
Upregulation Of Proapoptotic Genes In Lungs Of ZEBOV-infected Pigs

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Fold change</th>
<th>DPI3</th>
<th>DPI5</th>
<th>DPI7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASP1</td>
<td>Caspase 1</td>
<td>2</td>
<td>13</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>CASP3</td>
<td>Caspase 3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CASP1/4</td>
<td>Caspase 1/3</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CASP8</td>
<td>Caspase 8</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CASP15</td>
<td>Caspase 15</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CARD6</td>
<td>Caspase recruitment domain family</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>AATYK</td>
<td>Apoptosis-associated tyrosine kinase 2</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>FADD</td>
<td>Fas (TNFRSF6)-associated via death domain</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FAS</td>
<td>TNF receptor superfamily, member 6</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>TRAF3</td>
<td>TNF receptor-associated factor 3</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>TNIP3</td>
<td>TNFAIP3 interacting protein 3 isoform 3</td>
<td>3</td>
<td>10</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>AIF1</td>
<td>Allograft inflammatory factor</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Induce apoptosis of virus infected cells

Caspases also induce inflammation
Receptors And Interferon Stimulated Genes In Lungs From ZEBOV-infected Pigs

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Fold change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DPI3</td>
</tr>
<tr>
<td>CD14</td>
<td>CD14 molecule</td>
<td>1</td>
</tr>
<tr>
<td>CD163</td>
<td>CD163 molecule</td>
<td>8</td>
</tr>
<tr>
<td>TLR2</td>
<td>Toll-like receptor 2</td>
<td>3</td>
</tr>
<tr>
<td>TLR4</td>
<td>Toll-like receptor 4</td>
<td>4</td>
</tr>
<tr>
<td>TLR6</td>
<td>Toll-like receptor 6</td>
<td>2</td>
</tr>
<tr>
<td>RIG-I</td>
<td>Retinoic acid inducible protein I</td>
<td>12</td>
</tr>
<tr>
<td>IRF1</td>
<td>interferon regulatory factor 1</td>
<td>2</td>
</tr>
<tr>
<td>IRF7</td>
<td>interferon regulatory factor 7</td>
<td>4</td>
</tr>
<tr>
<td>ISG15</td>
<td>Interferon-induced 15 kDa protein</td>
<td>20</td>
</tr>
<tr>
<td>ISG20</td>
<td>Interferon-stimulated gene 20 kDa protein</td>
<td>15</td>
</tr>
<tr>
<td>IFIH1</td>
<td>Interferon induced with helicase C domain</td>
<td>3</td>
</tr>
<tr>
<td>IFIT-1</td>
<td>Interferon induced with tetratricopeptide</td>
<td>8</td>
</tr>
<tr>
<td>MX1</td>
<td>Myxovirus (influenza virus) resistance 1</td>
<td>15</td>
</tr>
<tr>
<td>OAS2</td>
<td>2’5’-oligoadenylate synthetase 2</td>
<td>5</td>
</tr>
<tr>
<td>IRG6</td>
<td>Inflammatory response protein 6</td>
<td>33</td>
</tr>
</tbody>
</table>

PRR → innate immunity

ISG → antiviral response
Model For The Pathogenesis Of Pulmonary Disease In ZEBOV-infected Pigs

ZEBOV in lungs:
Target cells: alveolar macrophages, DCs, epithelial cells

Cytokine response:
Proinflammatory (IL-1, IL-6, IL-8, IL-12, IL-22, IL-26, IL-27, GM-CSF, TNF-α, IFN-γ, selectin, resistin, SPP1)
Antiinflammatory (IL-10)
Suppressed (IFN-α)

Chemoattractants:
Chemokines: (CCL2, CCL3L1, CCL4, CCL8, CCL10, CCL19, CCL20 and AMCF-II);
Acute phase proteins (SAA, C9)

Interferon stimulated genes and transcription factors
(ISG15, ISG20, IFIH1, IRF7, vLIG1, IFIT1, MX1, MX2, OASL, OAS2, IRG6, DDX58)

Immune cell infiltration into lungs: Macrophages, neutrophils, lymphocytes

Apoptosis/necrosis: CTL, GZMB, CASP1, C9, TNF

Inflammation & pathology → respiratory distress

Anti inflammatory and modulation of T cell activation (IL-10, LAG-3)

Antiviral state and possible modulation of lung pathology
Aberrant host immune response induced by highly virulent PRRSV identified by digital gene expression tag profiling. Xiao et al. BMC Genomics (2010)
Are The Effects Of ZEBOV infection In Pigs Restricted To The lungs?

ZEBOV detection in tissues from infected pigs

<table>
<thead>
<tr>
<th></th>
<th>SLN</th>
<th>BLN</th>
<th>MLN</th>
<th>Lung</th>
<th>Liver</th>
<th>Spleen</th>
<th>Trachea</th>
<th>Muscle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pig 7</td>
<td>4.95</td>
<td>5.99</td>
<td>0</td>
<td>3.73</td>
<td>4.17</td>
<td>0</td>
<td>4.39</td>
<td>0</td>
</tr>
<tr>
<td>Pig 8</td>
<td>5.44</td>
<td>9.52</td>
<td>4.47</td>
<td>9.56</td>
<td>5.94</td>
<td>5.92</td>
<td>4.42</td>
<td>0</td>
</tr>
<tr>
<td>Pig 9</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>9.54</td>
<td>4.94</td>
<td>4.39</td>
<td>5.94</td>
<td>0</td>
</tr>
<tr>
<td>Pig 10</td>
<td>5.43</td>
<td>7.92</td>
<td>0</td>
<td>9.37</td>
<td>3.62</td>
<td>0</td>
<td>4.94</td>
<td>0</td>
</tr>
<tr>
<td>Pig 11</td>
<td>5.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pig 12</td>
<td>5.94</td>
<td>7.01</td>
<td>0</td>
<td>7.53</td>
<td>5.36</td>
<td>5.53</td>
<td>5.57</td>
<td>0</td>
</tr>
</tbody>
</table>
Changes In PBMC Subsets In ZEBOV-infected Pigs

- **MO**
 - % CD172a+ cells vs Days post infection

- **DC**
 - % dendritic cells vs Days post infection

- **B-cells**
 - % CD21+ cells vs Days post infection

- **T-cells**
 - % CD3+ cells vs Days post infection

Monocytes infected in vitro

B & T cells not infected
Systemic Cytokine Response In ZEBOV-infected Pigs

IFN-α

Days post-infection

Days post-infection

IL-6

pg/mL

pg/mL

IL-12

Days post-infection

Fold change in mRNA in PBMC

Days post-infection

Fold change in mRNA in PBMC

TNF-α

IFN-γ

Days post-infection

Fold change in mRNA in PBMC

Days post-infection

Fold change in mRNA in PBMC
IgM Antibody Response In ZEBOV-infected Pigs
Summary

Systemic effect of ZEBOV
- Fever
- PBMCs: ↓MO/DC, B cells
- Cytokines: IL-6, IFN-α, IFN-γ, IL-12, TNF-α
- Antibody: IgM, neutralizing antibodies

Pulmonary effect of ZEBOV
- Ebola virus
- BRONCHUS
- ALVEOLUS
- Epithelial cell
- Neutrophil
- Monocyte
- Cytokines, other mediators
- Blood capillary
“one should keep an open mind for the existence of other reservoir species and a role for potential amplifying hosts, especially after the discovery of Reston Ebola virus in pigs in the Philippines”: Feldman H and Geisbert T, 2011
Acknowledgements

Special Pathogens Unit
NCFAD, CFIA
Hana Weingartl
Shawn Babiuk
Greg Smith
Shunzhen Zhang
Peter Marszal
Thang Truong
Hani Boshra

Animal Care Unit
Melanie VanderLoop
Jamie Bernstein
Maggie Forbes
Kevin Tierney
Cory Nakamura

Special Pathogens Program
NML, PHAC
Gary Kobinger
Anders Leung
Gary Wong
Jason Richardson

Pathology Unit
Carissa Embury-Hyatt
Brad Collignon
Estella Moffat
Jill Graham

Microarray Unit,
University Health Network,
Toronto