Scenario Tree Model - Canadian Notifiable Avian Influenza Surveillance System

CAHLN
Dr. Jette Christensen, DVM, PhD
Dr. Farouk El Allaki, DVM, PhD
Dr. André Valliéres, DVM
Epidemiology and Surveillance Section
Outline

- Scenario tree model – scale
- Canadian Notifiable Avian Influenza Surveillance (CanNAISS) scenario tree model
 - Standardized presentation
 - Results
 - Planning tool
Scenario tree (freedom) model

Probability of Freedom

Biosecurity

Recent testing activity involving many animals

Recent testing activities involving few animals

Evidence Supporting Freedom

Historical testing activities

Weight = Time
Number of animals sampled
Accuracy of the test

Probability of introduction
Standardized presentation of scenario tree models*

- **(1) definitions to describe the objective of the model**
 - Design prevalence, time period, case definition, population

- **(2) initial time period**
 - Start date (1st time period) & prior probability of infection

- **(3) input parameters**
 - Values and distribution of probability of introduction, diagnostic test sensitivities, relative risks etc.

*Vanderstichel, Christensen, Stryhn, Hurnik. 2013. Standards for reporting surveillance information in freedom from infection models by example of Trichinella in Canadian market hogs. PVM (Accepted March 2013).
Standardized presentation of scenario tree models* (Con’t)

- (4) data
 - Actual data

- (5) model settings & structure
 - Scenario, software, number of simulations etc.

- (6) outputs
 - Probability of freedom and if relevant system sensitivity

- (7) validation
 - Biological specification & technical specification

*Vanderstichel, Christensen, Stryhn, Hurnik. 2013. Standards for reporting surveillance information in freedom from infection models by example of Trichinella in Canadian market hogs. PVM (Accepted March 2013).
Standardized presentation of the CanNAISS scenario tree model*

(1) definitions to describe the objective of the model

- Design prevalence, time period, case definition, population
 - the design prevalences (DP) were 1% farms and 30% poultry in infected farms
 - the time period (TP) was 1 month
 - the case definition was detection of NAI virus (isolation or PCR)
 - the target populations were: 685, 2,050, and 2,433 poultry farms for BC Ontario and East & West respectively;

Standardized presentation of the CanNAISS scenario tree model*

- **(2) initial time period**
 - Start date (1st time period) & prior probability of infection
 - The 1st time period was August 2008
 - The prior probabilities of infection (at the start of August 2008 and after an outbreak had been resolved) was \texttt{pert(0.49,0.5,0.51)};

Standardized presentation of the CanNAISS scenario tree model*

3 input parameters

- Values and distribution of probability of introduction, diagnostic test sensitivities
 - The probability of introduction was pert (0.067, 0.083, 0.1) scaled to the subpopulations: BC, ON, East&West;
 - Diagnostic test sensitivities (se) were
 - seVI= pert(0.800, 0.905, 0.990);
 - sePCR= pert(0.750, 0.839, 0.950);
 - seELISA= pert(0.720, 0.889, 0.999);
 - seAGID= pert(0.400, 0.778, 0.999); and
 - seHI=pert(0.800, 0.905, 0.999);

Standardized presentation of the CanNAISSL scenario tree model*

- **(4) data**
 - The study period was August 2008 to December 2011
 - The number of farms tested were
 - BC: 556
 - Ontario: 654
 - East & West: 1,121
 - Diagnosis at submission level
 - Inherent hierarchical data structure
 - Tests, samples, submission, herd, month

The submission diagnosis was 10 samples negative for NAI:

Data
8 samples negative on ELISA
2 samples negative on ELISA/HI testing

Laboratory result:
Antibodies against H3
Hierarchical structure

Subpopulation (BC, ON, East & West)

Month (data)

<table>
<thead>
<tr>
<th>Farm</th>
<th>nVI</th>
<th>nPCR</th>
<th>nELISA</th>
<th>nAGID</th>
<th>nHI</th>
<th>nHIa</th>
<th>nAIV</th>
<th>nVI2</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

E.g. VENAIS

Test protocol:
- ELISA
- ELISA/HI
- AGID/HI
- Etc.
Standardized presentation of the CanNAISS scenario tree model*

- **(5) model settings & structure**

 - Scenario tree, software, number of simulations etc.

 - model setting: stochastic 1 000 iterations in Excel with PopTools as an add-on;

 - scenario tree

Farm Status

Unit Status

Protocol

Standardized presentation of the CanNAISS scenario tree model*

- **(6) outputs**
 - Probability of freedom
 - graphical presentations of the posterior probability of each subpopulation being free from NAI at the level of the DP

- **(7) validation**
 - Biological specification
 - Sensitivity analysis
 - Peer review process*

* At 1% farm prevalence and 30% within farm prevalence
CanNAISS tool
FY 2012-2013 forecast*

Posterior probability of being free / Probabilité postérieure d'être indemne

* Preliminary data 31 August 2012
Claim of freedom from NAI in Canada

- CanNAISS scenario tree model
- Many testing protocols
- Context (reports)