Some news on Actinobacillus pleuropneumoniae

M. Gottschalk Professeur titulaire/Full Professor Département de pathologie et microbiologie Faculté de médecine vétérinaire Université de Montréal.

Actinobacillus pleuropneumoniae

- Very well known disease
- Clinically important in different countries (Mexico, Brazil, France, Spain, Eastern Europe, Asia)
- Relatively well controlled in USA and Canada
- In these two countries, \$\$ and effort:
 - To keep herds free from subclinical infection
 - To monitor absence of App in herds
- > High impact of diagnostic laboratories

NEWS ON APP: BIOTYPES AND SEROTYPES

App: biotypes and serotypes

Biotype I

- ➤ «Typical» App
- Best known serotypes: 1 to 12 and 15
- Four toxins produced: ApxI, ApxII, ApxIII and Apxiv

Biotype II

- Atypical App, similar (bacteriology) to A. suis
- Some serotypes are similar to biotype I App: 2, 4, 7
- Serotypes 13 and 14 as described in Europe
- These biotypes are either almost absent...or we are not doing a good job at the lab
- Serotype 13 in Canada: biotype I (classical); cross-reactions in serotyping and serology with serotype 10

Different serotypes and biotypes of App in Canada (old table)

App serotype	Biotype	Presence in Canada	Serology available in NA
1	I	Yes	Yes
2	I and II	Only biotype I	Yes
3	l	Yes	Yes
4	I and II	Only biotype I*	Yes
5	I	Yes	Yes
6	I	Yes	Yes
7	I and II	Only biotype I	Yes
8	I	Yes	Yes
9	I and II	No	Yes
10	I	Yes	Yes
11	I	No	Yes
12		Yes	Yes
13	I and II	Only biotype I	Yes
14	II	No	Yes**
15		Yes	Yes

*only from healthy pigs

**not validated in the field

App: serotypes present in Canada

- Based on what I presented the last table???
- > Isolation (confirmed)?
- > Isolation (oral/written, very old reports)?
- Data from laboratories in Canada and USA using very different techniques?
- > A little bit of everything...

Serotypes detected in the ELISA test in a Canadian context: serology

No (important) cross reactions

▶ 1, 2, 5, 12

>Old known cross-reactions

➤ 4 and 7; 3, 6 and 8

Recently described cross-reactions

- > 3/6/8 and 15
- > 10 and 13 (North American strains)

Serotypes detected in a Canadian context: serotyping

- Serological techniques good enough for serotypes 1, 2, 5 and 7
- With problems, we may be able to identify serotypes 4 (monoclonal antibodies) and 12
- > Very difficult to differentiate serotypes 10 and 13
- > We cannot differentiate serotypes 3, 6 and 8
- > Very difficult to differentiate serotypes 3/6/8 and 15
- We routinely receive strains from ISU that could not be serotyped by them

Different serotypes and biotypes of App in Canada

App serotype	Biotype	Presence in Canada	Serology available in NA
1	I	Yes	Yes
2	I and II	Only biotype I	Yes
3		?	Yes
4	I and II	Only biotype I*	Yes
5	I	Yes	Yes
6	I	?	Yes
7	I and II	Only biotype I	Yes
8	I	?	Yes
9	I and II	No	Yes
10	I	?	Yes
11	I	No	Yes
12	Ι	Yes	Yes
13	I and II	Only biotype I	Yes
14	II	No	Yes**
15		?	Yes

*only from healthy pigs

**not validated in the field

Different serotypes and biotypes of App in Canada (2013)

App serotype	Biotype	Presence in Canada	Serology
1	I	Yes	Yes
2	I and II	Only biotype I	Yes
3	l	?	Yes
4	I and II	Only biotype I*	Yes
5	I	Yes	Yes
6	I	?	Yes
7	I and II	Only biotype I	Yes
8	I	?	Yes
9	I and II	No	Yes
10	l I	?	Yes
11	I	No	Yes
12	I	Yes	Yes
13	I and II	Only biotype I	Yes
14	II	No	Yes**
15		?	Yes

*only from healthy pigs

**not validated in the field

App: serotype 10

- « Originally » described as one of the most virulent serotypes
- Experimental infections with the reference strains: we could not reproduce disease; others did
- > Almost no report from natural clinical cases worldwide
- We could not find any strain belonging to this serotype in Canada (we looked in all boxes...)
- Strains of this serotype have not been isolated in Minnesota and Iowa (or at least, they could not find any strain)
- Availability of anti-serotype 13 (from Canadian/US) origin is relatively recent: we did know now that this serotype cross-react with serotype 10
- > I wonder if we have ever had serotype 10 in North America

Different serotypes and biotypes of App in Canada (old table)

App serotype	Biotype	Presence in Canada	Serology available in NA
1		Yes	Yes
2	I and II	Only biotype I	Yes
3	I	?	Yes
4	I and II	Only biotype I*	Yes
5	I	Yes	Yes
6	l I	?	Yes
7	I and II	Only biotype I	Yes
8	l I	?	Yes
9	I and II	No	Yes
10	I	?	Yes
11	I	No	Yes
12		Yes	Yes
13	I and II	Only biotype I	Yes
14	II	No	Yes**
15	I	?	Yes

*only from healthy pigs

**not validated in the field

App: serotypes 3-6-8-15

- > Arrival of PCR to differentiate serotypes 3-6-8
- Serotype 3 usually considered as a low virulent serotype with the exception of the UK
- So, they decided to really verify if the have a high prevalence of serotype 3...
- Serotyping vs PCR
- Results:

App: serotyping in the UK

	Percentage of isola anir	ates from diseased nals
Serovar	Immunological	
2	6	
3	51	
6	3	
7	8	
8	30	
12	1.5]

App: serotyping in the UK

	Percentage of isolates from diseased animals	
Serotype	Immunological	PCR
2	6	3
3	51	1.5
6	3	3
7	8	9
8	30	82
12	1.5	1.5

App: serotypes 3-6-8-15

- Strains isolated in Canada and USA during the last 5 years
- > PCR 3-6-8
- If strong positive for anti-App 15 (in addition to 3, 6, and/or
 8) but negative by PCR: considered as serotype 15

App 3, 6, 8 or 15: North America

	Strains isolated in Canada or USA	
Serotype	Number of strains	Percentage
3	1	1%
6	11	13,5%
8	57	69.5%
15*	13	16%

*Strains that strongly reacted with anti-serotype 15 (and presented some reactions to serotypes 3, 6 or 8), but negative by the 3-6-8 PCR

Different serotypes and biotypes of App in Canada (2013)

App serotype	Biotype	Presence in Canada	Serology available in NA
1	l	Yes	Yes
2	I and II	Only biotype I	Yes
3	l I	Yes (+/-)	Yes
4	I and II	Only biotype I*	Yes
5	I	Yes	Yes
6	l.	Yes (+)	Yes
7	I and II	Only biotype I	Yes
8	I	Yes (+++)	Yes
9	I and II	No	Yes
10	l I	No	Yes
11	I	No	Yes
12	I	Yes	Yes
13	I and II	Only biotype I	Yes
14	II	No or ?	Yes**
15	I	Yes (+)	Yes

*only from healthy pigs

**not validated in the field

Which serotype is the most « prevalent » in our country?

- There are two different types of prevalence for App
 - Serotypes most frequently isolated from diseased pigs (mostly virulent serotypes)
 - Serotypes most frequently present in swine herds (independently of the presence of the disease): usually (not always) low virulent serotypes
 - Serology (usually)
 - PCR (less common) from tonsils
 - Not necessarily the same serotypes

App from clinical cases (2011-2013*)

	85 Strains received at our laboratory	
Serotype	Number of strains	Percentage
1	3	3,5 %
2	4	5 %
5	35	41 %
6	1	1 %
7	26	30,5 %
8	9	10,5 %
12	7	8 %

*Only 4 months of 2013

App: Prevalence by serology

- It is influenced by the distribution of different (low virulent?) serotypes that subclinically infect conventional herds
- Attention: it is also influenced by the « infectivity » of the serotype
 - High infectivity: serotypes 3 ,6, 8,15; 12
 - Low infectivity: serotypes 1, 5, 10, 13
- Testing 20 samples of a subclinically infected herd may present clear positive results if it is a serotype 12, but negative results if it is a serotype 5
- Prevalences from serological studies should be taken with caution

It is influenced also by the serological test used

Test	Sensitivity	Specificity
CFT	46 %	90 %
LPS-ELISA	74 %	100 %
Apxl/Tbp2 ELISA	13 %	100 %
ApxIV ELISA	13 %	100 %

*Opriessnig, Gottschalk et al., 2012

App from healthy animals (serology)

Serotype	Percentage
1	2 %
2	4%
5	6 %
3/6/8/15	15 %
7	26%
12	17 %

MacInnes et al. 2008

Comparison of different tests with sera from vaccinated animals (bacterin)*

Test	Sensitivity
CFT	40 %
LPS-ELISA	50 %
Apxl/Tnb ELISA	0 %
ApxIV ELISA	0 %

*Opriessnig et al., 2012

App: present/future work

- Serotype 14: present in Canada?
- Developping quantitative real-time PCR for direct detection of serotype-specific App from tonsils
- Detection of App from live clinically healthy animals (tonsils)
 - \succ Biopsies, swabs, brushes, etc.
- Characterization of untypable strains
- Serology in oral fluid (collaboration with JZ)
- Development of a PCR for serotype 15
- Development of an ELISA test for the detection of antibodies against Mycoplasma hyopneumoniae

Streptococcus suis

- Still one of the most important bacterial swine pathogen worldwide
- > 35 different serotypes
- Difficult to control
- > No effective vaccine available
- Serotype 2: Important zoonosis in some part of the world
 - Some cases described in Canada and USA
 - Many in Europe
 - A lot in Asia

Distribution (%) of the 7 serotypes of *S. suis* most frequently recovered from diseased in Canada and USA (2011) between 2007 and 2012

Capsular type	USA	2007	2008	2009	2010	2011	2012
2	17	17	25	13	11	18	13
1/2	8	5	8	11	6	9	6
3	20	12	14	14	13	10	10
4	9	7	6	5	4	5	6
7	13	5	5	5	4	4	2
8	11	7	5	9	8	8	5
22	2	3	2	4	7	7	3
NT	4	16	18	14	20	17	23

Distribution of *S. suis* serotype 2 in different countries

Country	Serotype 2 from clinical cases				
France	70%				
Spain	51%				
Italy	31%				
Netherlands/Belgium	36 to 49%				
UK	35%				
Brazil	39%				
Canada/USA	< 20%				

Virulence of European and North American strains of *S. suis* serotype 2

	Strains			
	Virulent France	Virulent Canada	Non virulent	
Fever	+++	+++	-	
Locomotor problems	+++	+++	-	
Nervous symptoms	+++	(+)	-	
Mortality	+++	+	-	
Meningitis	(+++)	(+)	-	
Arthritis	+++	+++	-	
Bacterial isolation (blood)	++	+++	+/-	

S. suis: human disease (up to 2005)

Rembember: less cases in pigs due to serotype 2 in NA

Distribution (%) of the 7 serotypes of *S. suis* most frequently recovered from diseased in Canada and USA (2011) between 2007 and 2012

Capsular type	USA	2007	2008	2009	2010	2011	2012
2	17	17	25	13	11	18	13
1/2	8	5	8	11	6	9	6
3	20	12	14	14	13	10	10
4	9	7	6	5	4	5	6
7	13	5	5	5	4	4	2
8	11	7	5	9	8	8	5
22	2	3	2	4	7	7	3
NT	4	16	18	14	20	17	23

Non typable strains

> Are these *S. suis*?

- > 99% of strains genetically confirmed as *S. suis*
- > New serotypes?
- > Non encapsulated strains?
 - Newly non described serotypes
 - Already known serotypes but with no capsule
- We performed hydrophobicity studies (to suggest the presence or not of a capsule) and electron microscopy
- Results

Non typable strains

- ➤ They are S. suis
- > Most of them are non encapsulated
- We are developping with a Japanese team multiple PCR for complete serotyping of 35 serotypes of S. suis
- These strains will be tested...
- In the past: considered as non encapsulated = non virulent
- Recent results indicate an important role in endocarditis
- More studies to come

S. suis: present/future work (partial list)

- Characterization of non typable strains
- Characterization of Canadian serotype 2 strains
- Co-infection studies
 - ➤ S. suis/PRRSV
 - ≻ S. suis/SIV
 - ➤ S. suis/M. hyorhinis
- Multiple PCR for serotyping
- More basic research studies (collaboration with China)
- Vaccine candidates: we have many...so far, it seems that it is not interesting for the Canadian Swine Health Board and Swine Innovation Pork

Acknowledgements

> Technicians of the App lab

- > L. Vachon, Kat, Geneviève
- Research assistant
 - S. Lacouture

The diagnostic service of the UdM